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A solution is derived for the problem of unsteady motion of heavy fluid with a 
free surface in the vertical plane in a porous medium. Such problems are encoun- 
tered in irrigation and land improvement schemes in connection with the filtra- 
tion of ground waters. To use numerical and approximate methods for obtaining 
a solution of this fairly difficult problem one must be sure of its existence. The 
case when the heavy fluid occupies,at the initial instant of time,a finite region, 
is considered. An earlier investigation of this problem by the author [l] was based 
on some other assumptions with the heavy fluid occupying a semi-infinite region. 

Let region L occupied by a heavy fluid be mapped onto a unit circle in plane I; by 
means of function z (c, t) , where the time t is a parameter. At the initial instant of 
time 

In this representation the coordinate origin in the % -plane corresponds to a drain in the 
L region. Function z (6, t) which depends on the complex variable f and on time 
t must satisfy some boundary condition at subsequent instants. 

The velocity potential of the motion of a heavy fluid is 

where p is the pressure, k is the filtration coefficient, p is the density, and g is the 
acceleration of gravity. The velocity components are 
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For determining the rate of boundary translation these quantities must be divided by the 
porosity coefficient m. 

We assume that along the contour of region L the pressure is ps, i.e. 

PL = Pl (3) 

This occurs when a heavy fluid is introduced into the porous medium region which ini- 
tially did not contain any fluid, In the absence of a drain the region occupied by the 

fluid moves downward at a constant velocity. This follows from the assumption of con- 
stant pressure p1 throughout the region. 

Hence it follows from (2) that 
V - 0, z- v, =k 

We assume that at the contour of the circular drain bore the pressure is p2 < ~1. Ccn- 

sequently 
p Iz=a=P2 (4) 

where 6 is the radius of the bore. 

The boundary condition along the contour of region L, which must be satisfied by 

function 2 (5, t), was established by the author in [Z]. It is derived here in greater de- 

tail than it was done in [a]. 

From (2) we obtain for the velocity potential 

hence 
cp - -’ Pg 

-+-kky 

P= -+wgY 

We introduce into the analysis the variable 5. Since in the unit circle the region 5 
the pressure along the external ( 1 p 1 = 1) and the internal (1 c 1 = 6,) contours is 
constant, p is defined by a logarithmic function of 6 ; 6, is me drain radius in the 5 - 
plane. It follows from this that at the unit circle contour 

8P aY 
an= 

Pl? aY 
-k an--w,n= 

A a2 -1 I I ag r;,@ ’ 
A= B-P 

lg 61 
(5) 

which implies that 

(6) 

Let us now determine t3y / an. We have 

Since 

we finally obtain 

Substituting (7) into (8) ( *) after transformation, for the velocity of the fluid motion 
along the normal to the contour of L at the corresponding points of the unit circle we 
obtain the formula 

*) T r a ns 1 a t or ’ s note : Evidently an error in the Russian original, 
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The translation of a point along the contour of region & during time t is 

(8) 

where m is the coefficient of the medium porosity. In such case the translation along 
the normal to the contour of region L and, also, at points of the unit circle contour is 

where the formulas for A and (8) have been used. During the time interval & we ob- 
tam in the region of variable c a contour which is close to the unit circle. 

The function that maps in this case a nearly circular contour onto the cirole is ofthe 

where the Schwarz symbol S, is used for brevity to denote the analytic function whose 
Y 

value at the unit circle contour appears within braces. We may write 

~(6, t+dt)= Z[ g--gs{[- k($-l) +-&(iL$JJat}] (12) 
Y 

from which 

After transformation of this formula, we finally obtain 

where it is taken into account that lg 6r = lg 6 - Ig 1 & / i?c 1~4. This condi- 
tion was obtained in 133 in another way. 

Below we use the notation 
k -= 
m L k(m--ml __p 

PV 

and assume that at the initial instant of time the region occupied by the heavy fluid is 
mapped onto the unit circle by function 

2 (5, 0) = 2s (5) = aI*5 -I- a*V + as*cs + 1) . . (15) 

The number of terms in the right-hand part can be finite, When it is so, this function 
is at the initial instant of time a polynomial of finite order. For subsequent instants of 
time the function is sought in the form 

e (5, t) = a, (8) s + a2 (t) F + at 0) %a + * * * (16) 

In that case functions aI (t), a2 (t) . . . and their initial values are real, and the re- 
gion at the initial instant of time is symmetric and retains its symmetry at all subse- 
quent instants. We then evidently have the condition 
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Thus the right-hand part of condition (14) is 

PM 6 - I!3 a1 M) 

Owing to this condition. equality (14) assumes the form 

( 17) 

Let us now substitute series (16) into formula (17) and consider the case of a finite num- 

ber of terms, for instance, four. Below we use functions of time without the argument. 
We obtain 

me 
[ 

J!$c $ - ihC E]C*is = ig 6 _ t al (t) = Re{[ ui’t + es’++ (18) 

as’ - ;s -t h’+J [aIS + 2a? + 3d3 + 4dPl + Jwz + 

2haaP + 3hZ + 4bC4}c=e~B 

Carrying out in (18) the multiplication, we obtain a series which contains the power, 

5-3, 5+, C-l, go, C’, c27 5” and c4 multiplied by some coefficients containing cer- 
tain functions u,, and a,,,‘. 

Noting that 

from (18) we obtain the following formula : 

Re 5 5 -$ - iht $]c.;s”8 - lg a1 5 ,g Q 
[ 

= ~alta4+4alup~+3~a3~ x (19) 

cos 3v + [alas’ + 2aaa4’ + 3al’as + 4az’a4 + 25as] co9 2v + 
[ala8 + 2a,as’ + 3a3a4’ + 2al’az + 3a,‘a, + 4as’ar + ha,] x 
cos v + [alal’ + 2a9aa’ + 3a8a9’ + 4arar’] + 4a4 co9 4v 

We equate the coefficients at cos 3v, cos 2v and cos v to zero, and obtain the fol- 
lowing system of four equations and initial conditions for four functions: 

%al’ + 4a,‘a, + 3haS = 0, alaa’ + 2aza,’ + (20) 
3a,‘aa + 4a2’a4’ + 2J.a~ = 0 

al’%’ + 2asas’ + 3aJar’ + 2al’az’ + 3az’a, + 4at’ad + k = 0 

alal’ + 2a2a3‘ + 3a9a9’ + 4a a ’ - 4 4 - Ig 6 ” lg al 

t = 0, a, (t) = a,*, as (t) = u2*, a, (t) = a**, a, (t) = ad* 

Note that some of the coefficients may be zero. If Eqs. (20) are satisfied, we have the 
following equality me 

SC 
I 

IL 
+ei@ lg i3 - Ig ~1 

= 4a, cos 4v (21) 

If the system of equations is restricted to n functions, then generally 

Re $-c$--ih6g]c_U- 
E 

Ir lgl3 -1ga1 
= na, cos nv (22) 

If the region boundary is smooth, a,, represents a coefficient of a Fourier expansion 



Nonlinear problem of unsteady filtration of heavy fluid 981 

of some function whose derivative exists everywhere, and the following estimate is valid : 

lenl <c/r9 
Consequently the right-hand part of Eq. (22) satisfies the inequality 

Ina,cosnv 1 Ccln (23) 
with Increasing number of equations. Thus this quantity tends with increasing n to zero 
and the process of successive approximations is convergent. 

System (20) can be readily transformed so that the first derivatives of unknown func- 
tions are expressed in terms of the functions themselves. In that case 

, Al A¶ al = T, a,’ = -, , AtI 
A . . . . a,=- 

A 

t =O, % =a,*, a2 =a*, . . ., a, =&a* 

where A is the determinant obtained from the system of equations and A,, A2, . . ., A, 
are the related subdeterminants. 

The law of construction of the matrix of coefficients for any number of equations is 
fairly simple. Let us show the method of forming such matrices on the example of four 
functions 

4ab 0 0 al 

3as 4a. al % 

2as 3as + al 4aa -I- 2as 3Q 
(25) 

al 2aa 3as 4ab 

Along the diagonals the matrix elements are the same and are added at intersections 
of diagonals. 

Note that in the considered case of filtration of heavy, as well as of weightless fluid 
the boundary of the region occupied by the fluid (in case of the model used in the clas- 
sical filtration theory where inertia is disregarded) cannot reach the drain, since the re- 
gion becomes multivalent. 

If the contour reaches the drain, to which the C-plane corresponds the coordinate ori- 
gin, we have I 2 (f;, 4 lmin - 0 
However according to the Koebe theory for one-sheeted functions 

I 2 (L 4 lb > V4 I al (4 l 

The right-hand part of this inequality is positive and nonzero, which shows that at some 
instant the univalence is lost. For a weightless fluid this phenomenon was analyzed in 
p]. Related computations and successive contour shapes are given in [4]. 

The solution of the nonlinear problem of heavy fluid filtration, derived on the basis 
of the classical filtration theory is fairly satisfactory up to a certain instant of time. 
This must be borne in mind when attempting to obtain a numerical or approximate so- 
lution of this problem. 
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The problem of stable plane capillary-gravitational waves of finite amplitude 
on the surface of a perfect incompressible fluid stream of finite depth is consi- 

dered. It is assumed that the waves are induced by pressure periodically distri- 
buted along the free surface, and that these, unlike induced waves,do not vanish 

when the pressure becomes constant, are transformed into free waves. Such waves 
are called composite; they exist similarly to free waves?for particular values 

of velocity of the stream. 

The problem, which is rigorously stated, reduces to solving a system of four 
nonlinear equations for two functions and two constants. One of the equations 

is integral and the remaining are transcendental. Pressure on the surface is de- 
fined by an infinite trigonometric series whose coefficients are proportional to 

integral powers of some dimensionless small parameter ; these powers are by 
two units greater than the numbers of coefficients. 

The theorem of existence and uniqueness of solution is established, and the 
method of its proof is.indicated. The derivation of solution in any approxima- 

tion is presented in the form of series in powers of the indicated small parame- 
ter. Computation of the first three approximations is carried out to the end,and 
an approximate equation of the wave profile is presented. 

Composite capillary-gravitational waves in the case of fluid of infinitedepth 

were considered by the author in [l]. 

1. Statement of problem and derivrtion of bralc aqurtionr. 
Let us consider a steady plane-parallel motion of a perfect incompressible heavy fluid 
of finite and constant depth h bounded from above by a free surface subjected to pres- 

sure PO = PO* + PO (z), where po’ = const and po (z) is a specified function of 
the horizontal coordinate x. We assume that the mean velocity c of the stream at the 
horizontal bottom is constant, is specified and directed from left to right. The term 
pi (5) indicates the presence of induced waves at any velocity c. In the absence of 

p. (5) free waves appear in the stream at certain particular values of c. Here it is as- 
sumed that pressure at the free surface is defined by the two terms. In this case the free 
surface in coordinates attached to the progressing wave moving at velocity c has the 


